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Abstract

The runaway process is known to accelerate electrons in many lab-

oratory plasmas and has been suggested as an acceleration mechanism

in some astrophysical plasmas, including solar flares. Current calcula-

tions of the electron velocity distributions resulting from the runaway

process are greatly restricted because they impose spatial homogeneity
on the distribution. We have computed runaway distributions which

include consistent development of spatial gradients in the energetic

tail. Our solution for the electron velocity distribution is presented as

a function of distance along a finite length acceleration region, and is

compared with the equivalent distribution for the infinitely long homo-

geneous system (ie. no spatial gradients), as considered in the existing

literature. All these results are for the weak field regime. We also

discuss the severe restrictiveness of this weak field assumption.
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1 INTRODUCTION

When a DC electric field is applied to a plasma runaway acceleration occurs

of electrons above a critical velocity. This process is a consequence of the

decrease of the dynamical friction [3] experienced by an electron when its

speed increases above ion thermal speeds.

This process is known to be important in laboratory plasmas such as

tokomaks and other toroidal discharge devices [14], as well as in astrophys-

ical plasmas eg solar flares. To date however, calculations of the velocity

distribution and production rate of runaway electrons have been limited to

the unphysical ideal of an homogeneous plasma of infinite spatial extent.

This idealisation, though not strictly correct in tokomak plasmas, is rescued

to an extent by the tokomaks toroidal periodicity. However in astrophysical

contexts it is obviously inappropriate.

In reality runaway acceleration occurs in finite sized acceleration regions

which may also be inhomogeneous. These spatial gradients can significantly

affect the development of the runaway process. In this paper we investigate

the role of spatial gradients on the runaway process. In particular we con-

sider how spatial gradients can develop in the tail of the distribution due to

the finite size of the acceleration region.

Our calculations have been made subject to the conventional assumption

of a weak electric field. We reconsider the implications of this weak field

assumption which is in our opinion significantly more restrictive than has

been recognised in much of the existing literature.

In section 2 we briefly review the existing calculations of runaway rate

and velocity distribution. The theory and numerical technique behind our

calculation of the electron velocity distribution is discussed in section 3. In

section 4 we present our results and compare them with existing calculations

which ignore the spatial variation.

2 THEORY

Previous attempts to understand the runaway process can be divided into

two broad categories. The Langevin approach considers the trajectories

of test particles moving through an unchanging background plasma. The

second approach is to establish and solve an appropriate equation describing

the electron velocity distribution. This second approach is clearly superior in

principle. However it has proven so difficult in practice that it has only been



accomplished under the restrictive assumption that the plasma is infinite and
homogeneous in space.

The essence of the electron runaway process is most easily seen using the

Langevin formulation. Consider an electron test particle moving through a
background plasma in the presence of an externally applied DC electric field.

The test electron is accelerated by the field. However it also experiences an

effective frictional deceleration in the direction of its motion relative to the

plasma. This is due to its many Coulomb interactions with the surrounding

plasma particles. This frictional drag is greatest for an electron with velocity

close to the thermal velocity of the local ion population [14]. Above the

ion thermal velocity the frictional drag is a decreasing function of electron

velocity. Thus there is always some velocity above which the electric field

acceleration is greater than the frictional deceleration. Once above this

critical velocity the effective acceleration of the electron grows as its velocity
grows. This is the essence of runaway acceleration.

The Langevin formulation is physically intuitive but incomplete. It ne-

glects the diffusion in speed and pitch angle experienced by the test particle.

It also lacks consistency since the background plasma can be considered as

a collection of test particles and so should also evolve under the influence of
the applied field.

The electric field required to cause runaway behaviour for a thermal

electron (v_h = 2kTt/rne) is known as the Dreicer field, ED. The importance

of the runaway process in the overall force balance of the plasma can then

be gauged by comparing the electric field to the Dreicer field. Calculations

of electron distributions resulting from runaway have always been restricted

to the weak field regime E/ED < 0.1. We also assume this restriction. This

implies that only an exponentially small fraction of electrons will run away,
admitting the possibility that the bulk of the distribution can remain close

to maxweUian and near steady state. The ratio of electric field to Dreicer

field is often rewritten as (vth/vcr) 2, where the critical speed vcr is the speed

at which acceleration by the electric field and frictional drag balance exactly.

Many different estimates of the rate of production of runaway electrons

in this weak field regime exist in the literature. The earliest were presented

by GiovaneUi [11] and Harrison [12]. However Dreicer [5, 6] is generally cred-

ited with the first detailed analysis. He considered the abrupt application of

a weak uniform electric field to an infinite homogeneous and ionized plasma.

His runaway rate was determined from the rate of decay of the total popu-
lation of coUisional electrons below the critical speed. He did not determine

the form of the distribution in the runaway regime. His solution was also
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compromised by his assumption that the distribution function dropped to

zero on the sphere of radius vc in velocity space.

Both Gurevich [9] and Lebedev [17] attempted analytic solutions to the

same problem by assuming a quasi-stationary distribution (ie. 0/Or ,-_ 0)

and applying different functional approximations for the electron velocity

distribution function f over different regions of velocity space. Kruskal and

Bernstein [15] and Gurevich and Zhivlyuk [10] developed this approach most

fully. By identifying five seperate regions of velocity space Kruskal and Bern-

stein determined a runaway rate to within an unknown constant multiplying

factor. Since then a number of numerical solutions of this problem have been

published [16, 22, 7]. By comparing their numerical determination of the

runaway rate to that of Kruskal and Bernstein, Kulsrud et al determined

this unknown numerical multiplying factor. The resulting runaway rate,

)_ = 0"35nev(vth/V/'2) \ 2ED ] exp -- 2E "

is the most frequently quoted runaway rate in the literature. Here v is the

electron collision frequency and ne the electron number density.

In the interest of clarity we point out that a critical electric field Ecr is

often defined which is the field required to balance the drag experienced by

an electron with speed kTe/rne. The critical and Dreicer fields are related

by Ecr -- 2ED ----41re3nelnA/kTe.

3 APPROXIMATING THE ELECTRON DISTRI-

BUTION FUNCTION

Our method of approximating the electron distribution function is described

in greater detail in Ljepojevic and Burgess [18] and Ljepojevic and MacNe-

ice [19]. The electron distribution function in a plasma can be found by

solving the Boltzmann transport equation

= (1)
t7_e _ c

where f is the electron distribution function, v is the electron velocity, z

is the position vector, F includes all forces acting on the electrons, and the

right hand-side of the equation describes the rate of change of f as a result

of collisional redistribution of electrons in velocity space. It is generally true



that the terms on the left hand-side of equation (1) represent effects driv-

ing the plasma away f_om Maxwellian, while the right hand-side describes
thermalising collisional redistribution.

Rosenbluth, MacDonald and Judd [20] have shown that when only 2-

body Coulomb collisions need be considered, and v2/c 2 _ 1,

with

G

/./(,,)= _ _, + _b / a%'/_(,,') Iv - ,/I -I
b 17_b

G(v)= _ / d%'.t'_(,,')I v - ,,' I,
b

and

4_re41nA
r=

m_

lnA is the Goulomb logarithm, b denotes the particle species in the plasma

(including other electrons) with which the electrons collide and c is the speed
of light.

Equation (1) with equation (2) is non-linear. In the low and high velocity

regimes it admits linearisation, the Spitzer-H_irm/Braginskii(SH) approxi-

mation at low velocities, and the high velocity Landau(HVL) approximation

at high velocities. Our solution is constructed by combining these approxi-
mations as described below.

For reasons of simplicity we assume that the plasma is fully ionized hy-

drogen in steady-state. The system boundaries are two parallel planes sepa-

rated by a distance L. Electrons entering this system across these boundaries

are assumed to have a MaxweUian velocity distribution. A uniform electic

field is applied between these two parallel planes in the direction perpen-

dicular to the planes. This idealised plasma therefore will exhibit spatial

variation only in the direction of the electric field. We shall associate a

cartesian coordinate 8 with this direction. We also assume that this applied
electric field is sut_ciently weak that the lower velocity bulk of the distribu-

tion is adequately described by the SH approximation. Finally we assume
that there is no spatial variation in the bulk of the distribution.



3.1 The Spitzer-H_irm/Braginskii approximation

This approach is based on Enskog's successive approximation (cf. Chapman

and Cowling [4]). It proceeds under the assumptions that the distribution

function exhibits slow temporal variation and weak spatial gradients, and is

subject to weak electromagnetic fields. As a result the distribution function
can be written as

f _- fo+ fl-[" f2-[-''',

where successive terms represent increasingly smaller corrections. The ze-

roth order term f0 is taken to be a MaxweUian. This approximation is similar

to a perturbation expansion in a small parameter although no small param-

eter has been explicitly designated. In fact we shall see that the solution

behaves as though the Knudsen parameter were that small parameter.

Spitzer and H_m [21] considered a plasma with a weak temperature

gradient and coaligned electric field (here assumed along the s axis). They

adopted a first order scheme which requires

fl = foD(v)l_,

where # = Cos8 = v. _/v = cos8 is the cosine of the electron pitch angle. D

is a function of the electron speed determined by substituting for ] in the

Boltzmann equation, linearising the coUisional integral in ]1, and solving

the resulting integro-differential equation. The solution has the form

[ZDE(eE IOpe _ ZDT 10Te

where ZDE/A and ZDT/B are tabulated in SH, Pe is the electron pressure,

Te is the electron temperature, E the electric field, A and B are normali-

sation constants for the electric field and temperature gradient respectively,

and ),0 is the mean free path of a thermal electron. DE and DT increase

with velocity and for p > 0 a speed v* (#) exists above which f becomes neg-

ative. It is also clear that as the scale lengths (OlnTe/Os) -1, (Olnpe/Os) -1

and kTe/eE decrease, v* (p) decreases. Thus the Spitzer-H_m approach is

only valid in the low velocity regime, and the upper boundary of this regime

depends on the strength of the electric field and temperature and pressure

gradients (see Gray and Kilkenny [8]). As mentioned earlier, in this paper

we assume OTe/Os = Ope/OS = O.



3.2 High velocity- the HVL approximation

Ifwe neglectthe interactionbetween the high energy tailelectronsincom-

parisonwith theircouplingto the bulk ofthe distributionwhich iscloseto

Maxwellian,then we can derivean approximate linearisedform of equation

(1),applicabletothe high velocityelectrons.Together with the assumptions

thatthe plasma isinhomogeneous in the directionofthe s axisonly,and in

steady state,equation (1)then becomes [18]

Of eE af lc9 I (kTeaf
\ W1e

where

8

----+vf)l-v(v)_-_ [(1-Iz2)_I,

(3)

v(v) -----41re4ne lnA
Tn,2,U3

with Te being the temperaturecharacterisingthe bulk of the electrondis-

tributionat heights and ne the electronnumber density.

Equation (3)can then be appliedtodetermine thevelocitydistributionof

electronsathigherenergies,above some appropriatelychosen cutoffvelocity
vc.

Our solutionisconstructedby combining the Spitzer-H/ixmsolutionbe-

low _c = vc/vthwith the HVL solutionabove _c. By experimenting with

differentvalues_c = 2 has been found to be the optimal value. At _c we

requirethatthe HVL solutionmatch the SH solutionforallpitchangles.

By choosingto extend the applicationof the Spitzer-H/irmsolutionout

to _ = 2,we have placedan upper limiton the strengthof the electricfield

which we can consider.We willchoose to set E/ED = 0.05. At thisfield

strengththe Spitzer-H/irmdistributionbecomes negativefor0 --_rand _ in

excessof about 2.2.At higherfieldstrengthsthe Spitzer-H/ixmdistribution

becomes negativeat even lowerspeeds.

Equation (3)isa linearisedform ofthe non-relativisticLandau equation.

Obviously when the electronvelocitybecomes a significantfractionof the

speed oflightrelativisticeffectsbecome important and equation (3)becomes

invalid.An appropriaterelativisticgeneralisationof the Landau equation

has been derived[1,13].However itisconsiderablymore complex in form,

and for reasonsof simplicitywe have chosen to retainthe non-relativistic

form forthispresentwork. This clearlylimitsthe maximum temperatures

of the bulk distributionswhich we can consider.
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Figure 1: ln(f/fN) variation with speed _ and pitch angle 0 at s = 4.375 x

109cm, for 0 < 0 < lr and 0 < _ _< 25. Unlabelled contours are evenly spaced

between labelled contours.

4 RESULTS

Equation (3) was solved for a plasma with bulk temperature 106K and elec-

tron number density 109cm -3. A uniform electric field E = --0.05ED_

was applied between the plane parallel system boundaries separated by a

distance L = 5 x 109cm. The solution was obtained for electron speeds

up to _ = 25 on a finite difference mesh with 80 grid cells along the

s axis. The mean free path of a thermal electron in this plasma is ap-

proximately 8 x 10%m, or approximately one tenth of the spatial grid cell

size. Since the electron mean free path scales as _4, there are roughly two

grid cells per mean free path at _ = 2. The normalised critical velocity is

_,,. = vcr/vth = (ED/E) 1/2 "" 4.5.
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Figure 2: (a) Variation of ln(f/fN) with speed _ for pitch angle 8 = 0, ie.
in the direction of electron acceleration, at s = 4.375 x 109cm. The dashed

curve is the equivalent maxwellian curve.(b) The same data plotted in (a)
recast in the form of the exponent function g.

4.1 The Distribution Function

A convenient representation of the solution can be achieved by defining a
function g( s, _, I_) such that

f = f,vexp (_g_2)

where the normalisation constant fN = n(2_rkTe/me) -3/2. A value of g =

1 gives the maxwellian value for f, g > 1 underpopulation relative to a
maxwellian and g < 1 overpopulation relative to a maxwellian.

Figure 1 illustrates the structure in velocity space of our solution at a

selected location, s = 4.375 x 109cm. The tail of the distribution is over-

populated relative to a Maxwellian distribution for/9 < Ir/2. The variation
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of both In(f/fg) and g with _ for 0 = 0, ie the direction anti-parallel to

the applied field, is shown in figures 2 a and b. At low velocity and very

high velocity the distribution is close to maxwell±an with temperature equal

to the assumed bulk temperature. The distribution begins to depart sig-

nificantly f_om maxwell±an near _ .-. 3.5 as the increasingly collisionless

character of the electrons permits them to gain more energy f_om the ap-

plied field between collisions. The In(f/fg) curve '_flattens" out somewhat

before eventually turning down again to rejoin the original maxwell±an curve
at very high velocities. The extent of this '_flattened" section of the curve is

limited by the finite spatial extent of the acceleration region. As the length

of the acceleration region is extended this flattened section is also extended

(figure 3) and would ultimately extend to infinite velocities in the idealised

case of an infinitely long acceleration region.

The typical variation of In/with 0 in the tail is illustrated in figure 4.
Note that the distribution is enhanced above maxwell±an in the direction

perpendicular to the field. This is a consequence of the diffusive spread in

pitch angle of the runaway tall.

In figure 5 we have plotted the variation of In/with perpendicular speed

_± at s = 4.375 x 109cm for two different values of _][ = _. $ of 6 and 10.

For _± < 5 where most of the energy resides, this is well fit by a gauss±an

with a temperature of 1.6 x 106K, as indicated by the superimposed dashed

line in figure 5b. Broadenning of this perpendicular velocity distribution

persists at larger _£ but with steadily diminishing degree, until for _± > 20

the perpendicular distribution becomes MaxweUian at about the original

background temperature of 106K. To determine the energy content of the

perpendicular velocity distribution we define a perpendicular temperature

T±('II,S) = fo¢_d_±,3 f(_ll,,X,S)/ fo°°d_i,xf(,ll,,±,s)

following Fuchs et al [7]. This is plotted in figure 6 as a function of _11at a

number of different spatial locations throughout the acceleration region. For

example at s = 4.375 x 109cm and {11-- 10 the perpendicular temperature

is 1.6 x 106K as we would expect given the fit shown in figure 5b.

Obviously, in the absence of any explicit source of electrical current there

should be no spatial variation of the total current. In our solution however

the spatial variation of f above _ -- 2 represents a small variation in current.

In reality any variation of this kind In the current would produce a local

accumulation of charge resulting in a local electric field acting to disperse

this accumulation. Therefore, in applying a fixed potential between the

9
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Figure 3: Variation of in(f/fN) with speed _ for pitch angle 0 = 0 beginning

at s = 0cm (leftmost solid curve), and continuing at regular intervals of

6.25 × 108cm up to 4.375 x 109cm (rightmost solid curve). The dotted line
is for the infinitely long homogeneous case.

boundaries of the system we have not guaranteed that a uniform field will

exist across the system. However in practice these departures from constant

current which we observe are so slight that the local fields which should

develop to restore current conservation can be neglected in comparison with

the much larger applied field. The variation of the current density with
position is illustrated in table 1.

The current flowing at so = 0 is -3.364 x 107statamps cm -2, while

the current at s = 5 x 109cm is -3.436 x 107statamps cm -2. Most of the

current is carted by the electrons below _ = 2 which contribute -2.514 x

107statamps cm -2 to the total current density. This enables us to use the

Spitzer-H_rm electrical conductivity to calculate the approximate field cor-
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Figure 4: Variation of ln(f/fN) with pitch angle 0 for velocity _ = 7_ at

s = 6.25 × 108cm (lower curve), s = 2.5 × 109cm and s = 4.375 × 109cm

(upper curve).

rection necessary to ensure constant current. In fact the ratio AE/E(so)

should be approximately equal to Aj/j(so) = 0.02. This correction would

have a negligible effect on the tail of the distribution.

What difference does inclusion of spatial gradients make to the velocity

distribution? To answer this question we need to compare our results with

the solution obtained when cg/i)s = O, ie. the system is assumed infinite and

homogeneous. As we have mentioned, such calculations have already been

published [22, 16, 7]. Unfortunately these authors have always considered

E/ED >_ 0.08, and have applied the same linearised equation throughout

all of velocity space with no special consideration of the thermal velocity

regime. We have been limited to E/ED < 0.05 precisely because of our
application of the Spitzer-H_ixm distribution at thermal velocities. Therefore

11
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Figure 5: Distribution of perpendicular velocities of electrons at s = 4.375 x

109cm (solid lines) with (a) _ll = _" 3 = 6 and (b) _11 = 10. The dotted

curves are the equivalent result for the infinite homogeneous case.

to isolate the differences introduced by consideration of spatial gradients it

was necessary for us to generate a solution for the infinite homogeneous

distribution with E/ED = 0.05 and consistent with the application of the

Spitzer-H_irm distribution below _ --- 2. We used a relaxation approach

similar to that of Wiley at al. [22]. The appropiate equation,

J J,
(5)

was solved using a finite difference approximation until an almost steady

state was achieved. This steady state distribution is illustrated in figures 3,

5 and 6. The infinite homogeneous solution appears to be the asymptotic

limit to which the position dependent distribution tends as the length of the
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Figure 6: Variation of the perpendicular temperature T± with _l[ and spatial

location. Each curve represents a different spatial location beginning with

the lowest solid curve at s = 6.25 x 10acre, and continuing at regular intervals
of 6.25 x 108cm out to the highest solid curve at s = 4.375 x 109cm. The

dotted curve is for the infinitely long homogeneous case.

acceleration region approaches infinity. The tail of this limit distribution,

for 0 = 0, has an f _ 1/_ dependence, as expected from conservation of flux

arguments [2].

4.2 The Runaway Rate

How do these results compare with the runaway rates quoted in the litera-

ture? To compute runaway rates we have followed the example of Wiley et

al [22]. Let us consider first the infinite homogeneous system. The rate of

production of runaways can be computed from the rate of loss of electrons

from the collisional bulk of the distribution. We choose to idealise the colli-

13



Table 1: Electric Current Density as a function of position for a uniform
electric field E = -0.05ED$.

s (10 9 cm) j (lOZstatamps.cm -2)

0.0000 3.364

0.1250 3.421

0.2500 3.422

0.3750 3.417

0.5000 3.414

0.6250 3.413

0.7500 3.413

:

4.6250 3.413

4.7500 3.413

4.8750 3.416

5.0000 3.436

sional regime as a sphere in velocity of radius _R. Integrating the equation

(5) over the volume of the coUisional regime gives

Onc OnR 8_r2ne41nAf'__ . (E2 lO.f )

(6)
where nc is the number of electrons in the bulk and nR is the number of

runaway electrons. For comparative purposes we define a normalised time

r = t 41re41nA 1

The runaway rate r = n-1Onlz/Or can be easily calculated once we have

chosen an appropriate value for _R. The obvious choice would seem to be

the critical velocity _R = _cr. The variation of r with _R is illustrated in

figure 7. For the infinite homogeneous system, the rate decreases rapidly

with increasing _R until just above the critical velocity, near 4.5 in this case.

It maintains a fairly constant value thereafter. This constant rate, which

14
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Figure 7: Variation of the rate F as a function of _R for the case of

the infinitely long homogeneous plasma(dotted line), and for position s =

4.375 x 109cm along the finite sized acceleration region(solid line). The hori-

zontal broken line indicates the runaway rate computed f_om the expression

of Kruskal and Bernstein given in section 2.

is approximately 70% larger than predicted by the normalised Kruskal and

Berustein [15] formula is the obvious choice for the runaway rate.

When spatial gradients are retained in the calculation of the distribution

function the identification of a runaway rate is much less clear. The integral

of equation (3) over the collisional sphere in velocity space produces an

equation identical to equation (6) except for the addition of a term due to

the spatial gradient. However the spatial gradient term is responsible for

convective transport of electrons, and does not result in any change to their

speed. It does not contribute directly to the rate of production of runaways.

Thus equation (6) can be used to compute the runaway rate in the presence

15
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Figure 8: Variationof the runaway ratewith positionin the finitelength

accelerationregion.The rateiscomputed using_i_= 5.

of spatial gradients also. In figure 7 we show the variation of r with _R at

s = 4.375 × 109cm. As _R increases the rate drops steadily. The energetic

tall has not developed sufficiently to produce a rate independent of _R as was

the case in the infinite homogeneous system. The runaway rate is clearly

sensitively dependent on our choice of _R. We will choose _R = 5 for two

reasons. The first is that it lies just above the critical runaway velocity

_cr = 4.5 which is where the rate became insensitive to the value of _R in
the infinite homogeneous case. The second is that this is the same choice

adopted by Wiley et al [22]. In figure 8 we show how this runaway rate

varies as a function of position along the acceleration region.
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5 DISCUSSION

This present calculation is limited in the maximum values of E/ED and Te

which can be considered. Our requirement to match solutions above and

below _ -- 2 limits the size of the electric field . For E/ED > .05 the

Spitzer-H_rm solution is no longer sufficiently accurate near _ -- 2. This

limitation can only be overcome by more accurately solving the non-linear

equation which defines the distribution function in the region of the thermal

velocity. No other numerical calculations of the runaway rate have addressed

this difficulty satisfactorily in spite of the fact that they typically apply

electric fields in the range 0.08 _< E/ED < 0.2. The limitation on the bulk

temperatures which we can consider is a consequence of our non-relativistic

treatment. By raising the temperature we push the runaway regime to a
higher range in (v/c) 2.

Our results show that except during the initial stages of acceleration

the runaway rate predicted by the normalised Kruskal and Bernstein theory

is accurate to within a factor of two. However in any application which

requires the actual distribution of electrons rather than the total number

in the tail, the infinite homogeneous result is capable of being in error by
orders of magnitude.
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